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The triangle in reciprocal space associated with a given structure invariant is employed to introduce 
the concept of the strong equivalence of structure invariants and to describe its relationship to the 
earlier theory of equivalence. It is assumed that the collection of interatomic triangles in a crystal 
structure may be partitioned into subsets in such a way that the interatomic triangles in each subset 
are congruent, lie in the same or parallel planes, and are randomly oriented about a common normal. 
For structures satisfying these conditions, two structure invariants which are equivalent to each other in 
the strong sense are also approximately equal, especially if the sides of the associated triangle are 
small. This result may find application in the solution of the problem of direct phase determination 
for extremely complex structures satisfying our assumptions. 

1. Introduction 

In the determination of crystal structures, powerful use 
is usually made of some previously known structural 
information. If the crystal structure determination is 
carried out by the so-called direct method, i.e. by find- 
ing first the phases of the structure factors, it is not al- 
ways clear just what a priori structural knowledge has 
been utilized or how it has been employed. The study 
of this matter is important because its clarification 
leads to a strengthening of the direct method of phase 
determination. Thus, once it was recognized that the 
inequality relationships among the structure factors 
(Harker & Kasper, 1948) were based on the non- 
negative character of the electron density distribution, 
it became possible to extend considerably the class of 
known inequalities (Karle & Hauptman, 1950). Again 
the Sayre (1952) relationship was appreciably sharp- 
ened by means of algebraic and probability methods 
which deliberately exploited the essential discreteness 
of the electron density distribution, the structural 
feature upon which the equation of Hughes (1953) and 
its probability counterpart (Zachariasen, 1952; Haupt- 
man & Karle, 1953; Woolfson, 1954) depend. More 
recently, it has been found possible to utilize previous 
knowledge of partial or complete molecular structure 
as an aid in phase determination (Hauptman, 1964). 
Finally, for extremely complex structures having the 
property that many of the interatomic triangles are 
congruent to each other and are randomly oriented in 
space (a situation which obtains, for example, in cer- 
tain protein structures), the theory of the equivalence 
of structure invariants yields additional relationships 
among the structure factors (Hauptman, 1966). In 
view of the latter development, it is natural to ask 
whether anything can be salvaged if it should happen 
that interatomic triangles are congruent but not neces- 
sarily randomly oriented in space. It is our purpose in 
the present paper to give an affirmative answer to this 

question. To this end we introduce the theory of strong 
equivalence, relate it to the earlier one on the equival- 
ence of structure invariants, and show how it leads to 
the relationships we seek. 

2. Preliminary definitions 

Denote by N the number of atoms in the unit cell and 
by Zj and rj the atomic number and position vector 
respectively of the atom labeled j. The normalized 
structure factor E h and its phase ~Ph are defined by 

1 N 
Eh =lEhl exp (#ph)= a~/2 j=l • Zj exp (2rcih. rs) (2.1) 

where 
N 
s (2.2) 

j = l  
If we assume that 

hi + h2 q- 113 = 0 (2.3) 

and introduce the abbreviations 

~pi = fh/, i=  1,2,3, (2.4) 

then the linear combinations of the phases 

(/91 -+" (/92 q- (/93 , (2.5) 

are known as structure invariants since their values 
are uniquely determined by the crystal structure and 
are independent of the choice of origin. 

Instead of (2.5) we shall be particularly interested in 
the variant 

VhIh2h3=IE1EzE3[ c o s  ((/91 -~-~2"~'~3 ) (2.6) 

in which the abbreviations 

E~ = Eh,, i= 1,2,3 (2.7) 

have been employed. Under the assumption (2.3), the 
Vhlh2h3, like (2.5), are evidently structure invariants. 
They are important because it is their values, rather 
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than those of the individual phases 0h, which are, in 
general, uniquely determined by the known magnitudes 
IEhl of the structure factors. In addition, the values of 
the Vh ~h 2h 3 lead directly, by means of simple arithmetic, 
space-group dependent procedures for fixing the origin 
and enantiomorph (Hauptman & Karle, 1956; Karle & 
Hauptman, 1956,1957), to the values of all the phases Oh" 

3. The concept of strong equivalence 

Def. 3.1. In view of (2.3), the structure invariant V h lh2h3 

determines a triangle, ~hlh2h3 , said to be the triangle 
associated with V hah zh 3 and having a definite orientation 
in reciprocal space, whose sides are the vectors h~, h2, h3. 
The lengths of its sides are denoted by 

qh~=lh~l, i=  1,2,3. (3.1) 

Def. 3.2. Two invariants V h ~h 2h 3 and Vkxk2k3 are said to 
be equivalent in the strong sense if their associated 
triangles, A h ~h 2h 3 and A k ~k 2k 3' are congruent and co- 
planar. We assume naturally that hl+h2+h3 = 
k l+kz+k3  =0. 

The notion of approximate strong equivalence is 
particularly important in application. Thus Vh lh 2h 3 and 
Vk ak 2k3 are considered to be approximately equivalent 
in the strong sense if their associated triangles, Ah ~h zh 3 
and Akak2k3 are approximately congruent and approx- 
imately coplanar. 

Since the equivalence of structure invariants requires 
only the congruence (not necessarily the coplanarity) 
of the associated triangles (Hauptman, 1966), it follows 
that two structure invariants which are equivalent to 
each other in the strong sense are also equivalent. 

The relationship of strong equivalence induces a 
partition of the set of structure invariants (2.6) into 
mutually exclusive subsets having the property that 
any two invariants which belong to the same subset are 
equivalent to each other in the strong sense while two 
invariants belonging to different subsets are not equiv- 
alent to each other in the strong sense. The importance 
of the concept of strong equivalence stems from the 
fact that, for structures satisfying certain conditions, 
two structure invariants which are equivalent to each 
other in the strong sense are approximately equal. 
Thus the notion of strong equivalence facilitates the 
solution of the problem of direct phase determination. 

4. The structure invariants Vh lh 2h3 

The starting point of our investigation is the equation 
(Hauptman & Karle, 1962) 

1 
Vh~h2h3 U~/2 (IEh~lZ+lEh212+lEh3l 2-2) 

= ( N -  1) ( N - 2 )  (cos 2n(h~ • ru~-h~, rvo))uvp (4.1) 
NI/2  - , 

in which ruv and r w are adjacent interatomic vectors, 

r a , = r s , - r  ~, r , ,p=r~-rp,  rp~=rp-r~,, (4.2) 

and the average of the cosine is defined by 

(cos 2n(hl . ru~-h3rw))u~p 
N 

X cos 2n(hl • ruv--h3 • r~p) 

= 1 (4.3) 
N ( N -  1) ( N - 2 )  

Equation (4.1), which expresses the structure invariant 
Vhlhzh3 in terms of the interatomic vectors, is valid if 
the crystal structure consists of N identical atoms in 
the unit cell. It will be clear however that our final 
result retains approximate validity even if this require- 
ment is relaxed somewhat, provided that 'heavy-atom' 
structures are excluded. 

Next, we attempt to estimate the average (4.3) by 
replacing each term in the sum on the right hand side 
by its average value. Which average shall we choose? 
In order to answer this question we observe that there 
corresponds to each term in the sum an interatomic 
triangle having sides ruv, rvp, rpu since, in view of (4.2), 
ruv+rvo+rpu=O. In other words, the sum in (4.3) is 
taken over all the interatomic triangles. Since the 
crystal structure is fixed, the planes of the interatomic 
triangles, the magnitudes of the interatomic vectors, 
and the angle between any pair of adjacent interatomic 
vectors, while perhaps not known, are nevertheless 
also fixed. These facts suggest that we fix the vectors 
hl, !13 and the plane and the magnitudes r and r' of the 
vectors r and r' respectively (to be identified later with 
a pair of adjacent interatomic vectors) as well as the 
angle ~0r between r and r'. We imagine all orientations 
in a fixed plane of the triangle determined by r, r', and 
~0r to be equally probable and, under these conditions, 
require the average value of cos 2n(hl • r - h  3 • r'). De- 
noting by c~ the angle between the plane of r and r' and 
that of ha and h3 and referring to equations (17) and 
(13) of an earlier paper (Hauptman, 1965) we find this 
average to be 

(cos 2n(hl • r - h 3 "  r ' ) ) =  C(r+; ~) 

=Jo (2nr+ sinZ2) Jo (2nr-cos22) , (4.4) 

where 
r '  r '2} ~ r±= {q~,rZ+2qhlrqh3 CoS(Or±Oh) +q~3 , (4.5) 

qh~ and qh ,are the magnitudes of hi and h3 respectively, 
and Oh is the angle between h~ and -h3. Substituting 
from (4.4) into (4.1) we find 

1 
Vh~h~h~ -- -N-~- (IEh~I z + ]Eh2l z + IEh~IZ--2) 

~ ( N -  1) ( N - 2 )  
~ N ~ (C(r±uvp;  %w))uvp  (4.6) 

where C(r+uw; ~uvp) is obtained from (4.4); the r+uv p 
are found from (4.5) by replacing r by ruv = Iruvl, r' by 
rvp=lrvpl,, and 0r by Ouw, the angle between ru~ and 
rp,; %w ~s the angle between the plane of the inter- 
atomic triangle determined by ru,, rvp, rpu and the plane 
of hi and h3; and the average of C(r±uw; %w) is de- 
fined by 
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N 
Z C(r±uvp ; ~uw) 

lt~v+O4:lS 
(C(r±u,p; c~uw))= 1 (4.7) 

N ( N - 1 ) ( N - 2 )  
There remains the problem of determining the pre- 

cise conditions under which the average of (4.4) may 
be substituted for that appearing in (4.1). In view of 
the meaning of the average in (4.4) we formulate the 
following [which we call hypothesis II in order to 
distinguish it from the hypothesis of our earlier paper 
(Hauptman, 1966)]: 

Hypothesis II. The set of all interatomic triangles 
may be decomposed into mutually exclusive subsets 
with the property that the interatomic triangles in any 
subset are congruent to each other and coplanar, in 
the sense that they lie in the same or parallel planes. 
Furthermore, the triangles in any such collection of 
congruent, coplanar interatomic triangles are randomly 
oriented about their common normal. (It is to be noted 
that no restriction on the number of such families of 
congruent, coplanar interatomic triangles is imposed.) 

We show next that, except for the errors inherent 
in finite sampling, (4.6) is valid if the crystal structure 
fulfils the requirements of hypothesis II. In order to 
prove this it is sufficient to group the terms in the 
numerator of the right hand side of (4.3) into sets, the 
terms in each set corresponding to all those interatomic 
triangles which are congruent to some specified one 
and which lie in planes parallel or identical to the plane 
of the specified interatomic triangle. Since the inter- 
atomic triangles in any such set are assumed to be 
randomly oriented about their common normal (hypo- 
thesis II), the sum of the cosine terms corresponding 
to each such set in the numerator of (4.3) is equal to 
the number of terms in the set multiplied by the ap- 
propriate average C(r±uw; auw ). In this way we arrive 
at (4.6) and (4.7). 

It is clear that even if hypothesis II is relaxed some- 
what, in particular for the larger interatomic triangles 
whose corresponding terms in (4.3) would then tend 
to cancel each other and for which the values of 
C(r±uvp; O~ltvp ) are small anyhow, (4.6) still retains ap- 
proximate validity. 

There remains only the problem of showing that, 
for structures satisfying hypothesis II, the right hand 
side of (4.6) has the same value for any two structure 
invariants which are equivalent to each other in the 
strong sense. To this end let l/rklk2k3 be any structure 
invariant equivalent to Vhxh2h3 in the strong sense. Then 

k l + k z + k 3 = 0 ,  qki=[kil=lhil=qhi, i=1,2,3, 

and the plane determined by kx and k3 is parallel to 
that determined by hi and h3. For this invariant (4.6) 
becomes 

1 
l / 'klk2k3- ~ - T  (IEk, I 2 +lEk2[ 2 +lEk312 - 2 )  

( N -  1) (N-2)  
N* (C(r '±uva; O~I~vp))BvP ' (4.8) 

where r±uvp and auvp are obtained from r+zv p and altvp 
respectively by replacing hi by kl, h3 by k3, and ~h, the 
angle between hi and -h3,  by q~k, the angle between 
kl and -k3 .  Since Vhlh2h3 and Vkxk2k3 are equivalent in 
the strong sense, the associated triangles Ahxh2h3 and 
Z~klk2k3 are congruent so that q k l = q h l  , qk3=qh3,  and 
tpk=~0 h. In view of (4.5), r~uvp=r±uvp for al l / l ,  v, Q. 
Furthermore, Ah~hEh3 and Aklk2k3 lie in parallel planes 
so that ~uvp, the angle between the plane of the inter- 
atomic triangle ruv , rvp , rpu and that of Ahlh2h3 , is equal 
to %,~p, the angle between the plane of ru~, rvp, rpu and 
that of Aklk2k3 , for all/~, v, Q. Since r±u~p=r+uvp and 
eu~o ~ = c~u~p' for all/z, v, Q, it follows that the right hand 
sides of (4.6) and (4.8) are equal to each other. Finally, 
for large N, the second terms of the left hand sides of 
(4.6) and (4.8) are relatively small. Thus we arrive at 
the main result of this paper: 

Theorem. For structures satisfying hypothesis II, 
two structure invariants, equivalent to each other in 
the strong sense, are approximately equal. 

5. Concluding remarks 

As has already been observed, our theorem retains 
approximate validity even if hypothesis II is relaxed 
somewhat. It is an important fact that, in the event 
that the sides of the associated triangle are small, then 
the error resulting from the relaxation of hypothesis II 
is particularly small. Conversely, the theorem tends to 
lose validity as the sides of the associated triangle in- 
crease. Intuitively this is seen to be a consequence of 
the fact that interatomic triangles which are almost 
congruent or almost coplanar 'appear' to be more 
precisely congruent or coplanar when viewed from the 
low resolution inherent in the small size of the triangle 
with sides hx, 112, !13. It is not difficult to give a more 
rigorous justification based on a closer analysis of the 
terms of (4.3). However, the argument is so similar to 
the corresponding one given in our earlier paper (1966) 
that we do not repeat it here. 

We observe next that crystal structures satisfying 
our earlier hypothesis (1966) also satisfy the present 
hypothesis II, but not necessarily conversely. Thus 
hypothesis II imposes a milder restriction on the struc- 
ture than the earlier one. For this reason we anticipate 
that our present theorem should yield fewer relation- 
ships among the structure factors than were obtained 
in the earlier paper. That this does indeed turn out to 
be the case is a consequence of the fact that two struc- 
ture invariants which are equivalent to each other in 
the strong sense are obviously also equivalent, but not 
necessarily conversely. 

If, for structures satisfying hypothesis II, it should 
happen that the molecular structure is partially or com- 
pletely known and if the orientations of many inter- 
atomic planes are also known, then (4.6) may be used 
directly to obtain initial estimates of the invariants 
Vhth2h3" Standard techniques (e.g., Karle & Hauptman, 
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1956, 1957, 1958) may then be employed to determine 
more accurately the values of all the phases. 

We note finally that complex crystal structures, in 
particular protein structures, often satisfy (at least ap- 
proximately) the present hypothesis II, as well even as 
our earlier hypothesis (1966). We therefore anticipate 
that the methods described here and in the earlier 
paper may eventually find application in the elucida- 
tion of such structures. 
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The sensitivity of the higher-moment test for detection of centrosymmetry to errors in the intensity 
data is examined. The errors considered are (1) random errors proportional t o / ,  (2) systematic errors 
of the type Io=kS, [1 -exp  (-I lk ,r)] ,  (3) errors associated with the non-observance of very weak 
reflexions, and (4) errors systematic in sin 0. Mathematical expressions are obtained in a compact form 
for (z ") including the effect of errors in all the cases except (4). Tables of (z" ) with errors are given. 
It is found that it would not be profitable to use moments of very high order such as (z4) or (zS) but 
that the higher-moment test is relatively safe for crystals whose weighted reciprocal lattice contains a 
large percentage of very weak reflexions. 

Introduction 

Various statistical criteria based on the statistical 
distribution of X-ray intensities have been used to 
distinguish between centrosymmetric and non-centro- 
symmetric crystals (or projections). Deviations from 
Wilson's (1949) distributions occur for various reasons 
such as the presence of a few dominating atoms, 
pseudo-symmetry, etc., and the distributions of inten- 
sities in these special cases have been considered by 
various authors. The distributions obtained in prac- 
tical cases may also deviate from Wilson's distribu- 
tions (even in the absence of the above mentioned 
disturbing features which are structural in nature) 
because of the use of inaccurate intensity data, i.e. 
intensity data with errors of observation. Rogers, 
Stanley & Wilson (1955, hereafter referred to as 
R-S-W) have considered the effect of errors of various 
kinds in the original intensity data on the statistical 
criteria such as the cumulative distribution function 
N(z), the test-ratio 0 of Wilson, and the specific vari- 

* Contribution No. 196 from the Centre of Advanced Study 
in Physics, University of Madras, Madras 25, India. 

ance, v, with the aim of finding a rough upper limit 
for the discrepancy that can be allowed in practical 
cases where intensities with the errors of observation 
are involved. This enables one to avoid correlating 
such deviations (i.e. the statistical anomalies arising 
from the use of inaccurate intensity data) with struc- 
tural peculiarities. In the present paper we shall study 
the effect of errors in the intensity data on the higher- 
moment test which has been proposed by Foster & 
Hargreaves (1963a, b) and independently by Srinivasan 
& Subramanian (1964). The additional advantage of 
the higher-moment test over other statistical criteria 
is that the exact theoretical values of the higher mo- 
ments can be obtained under very general conditions 
(Foster & Hargreaves, 1963a, b). We shall however 
consider here only the equal-atom-random-position 
case as has been done by R-S -W since this would suf- 
fice to show the influence of intensity errors on the 
higher-moment test. 

A second aim of the present investigation is to study 
the sensitivity of the various higher moments to the 
errors of intensity data; such a study may therefore 
provide some guidance regarding the choice of a par- 
ticular higher moment as optimum in practical cases. 


